

Test Report No. C230309039002-1 Date: Mar 22, 2023 Page 1 of 22

Applicant: Dagin New Energy Tech(Taizhou)Co.,Ltd

Applicant address: 199 Keji Road, Sanshui Street, Jiangyan District, Taizhou City, Jiangsu Province,

PEOPLE' S REPUBLIC OF CHINA

The following samples were submitted and identified on behalf of the clients as

Sample Name: Lithium battery system

Tower Pro Series (HV9640,TP7,TP11,TP15,TP19,TP23) Model:

CPST Internal Reference No.: C230309039

Mar 09, 2023 Sample Received Date:

Test Period: Mar 09, 2023 to Mar 22, 2023 Test Method: Please refer to next page(s). Test Result: Please refer to next page(s).

> Signed Can Son behalf of sumer Products Testing Service Co., Ltd Eurones (Dongguan) Col

WRITTEN BY:

REVIEWED BY:

APPROVED BY:

air Lu

Report writer

Liu Xiao Fang, Sunshine

Report Reviewer

Pan Jian Ding, Will **Technical Supervisor**

Test Report No. C230309039002-1 Date: Mar 22, 2023 Page 2 of 22 **CONCLUSION: TESTED SAMPLES** TEST ITEM **RESULT** 1.RoHS Directive 2011/65/EU Annex II amending Directive (EU)2015/863 Lead, Cadmium, Mercury, Hexavalent Chromium, PBBs Lithium battery **PASS** and PBDEs Content system —Di-(2-ethylhexyl) phthalate(DEHP), Benzylbutyl phthalate(BBP), **PASS** Dibutyl phthalate (DBP), Diisobutyl phthalate(DIBP) Content

No. C230309039002-1

Date: Mar 22, 2023 Page 3 of 22

Http://www.cpstlab.com

2. Test Item Description And Photo List

Sample No.	Description	Photograph
001	Silvery metal	CRS CX
002	Red plastic	
003	Silvery metal	12 3 5 6 7
004	White metal	
005	Black foam with adhesive	
006	White fabric with adhesive	4
007	Silvery metal (Screw)	0, 20,
008	Black soft plastic with adhesive (Cushion)	
009	Gray glue	351 CPS
010	White plastic	CY 51 CY 3
011	Silvery metal	9 10 11 12 15
012	Silvery metal	
013	Silvery metal	13 14
014	Silvery metal	851 CR5 C
015	Silvery metal	

No. C230309039002-1

Date: Mar 22, 2023

Page 4 of 22

Sample No.	Description	Photograph
016	Silvery metal	16 17 18
017	Blue/red printed white paper with adhesive (Label)	HJZ HJ1 JT JOO
018	Silvery metal	
019	Gray plastic	19
020	Silvery/golden metal	
6 021	Silvery printed black plastic	CRS) CR
022	Silvery printed blue plastic	21 22 23 24 25 2
023	Silvery metal	
024	Brown body (Filling)	
025	Black plastic	
026	Silvery metal (Pin)	

No. C230309039002-1

	Date. Iviai 22, 20	20 16	ige 5 01 22
_		~~~	
	00		

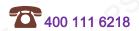
Sample No.	Description	Photograph
027	Black body	x 0 05 0
028	Black body	35° CY 05'
029	Black body	27 2829 30
030	Black body	
031	Yellow body	31
032	Black body	33 35 34 Church
033	Silvery metal (Pin)	
034	Black body	CY SY CY
035	Silvery metal (Pin)	a crass
036	Black body	35 (37 35)
037	Silvery metal (Pin)	C. C
038	Copper metal (Coil)	36 39 40 41
039	Black body	
040	Brown body	
041	Black body	37 - 38 0 - 42
042	Black body	
043	Silvery metal (Pin)	8 6 85
044	Black body	3 1

No. C230309039002-1 Date: Mar 22, 2023 Page 6 of 22

Sample No.	Description	Photograph
045	Black foam with adhesive	1 0 2 5 C
046	Transparent/red body	45 46
047	Silvery metal (Solder)	47
048	Green PCB	R 2 0 051
049	Black plastic	CRS SS CR
050	Silvery metal (Pin)	9 CY CY CY
051	Golden metal (Pin)	
052	Coppery metal (Contact plate)	49 54 56
053	Coppery metal (Contact plate)	51 55 55 55
054	Black soft plastic	57
055	Silvery metal (Wire)	of contract
056	Black plastic	
057	Silvery metal	Ch Ch

No. C230309039002-1

Date: Mar 22, 2023


Page 7 of 22

Sample No.	Description	Photograph
058	White fabric	ST CREST C
059	Red plastic	58 59 62
060	Silvery metal (Wire)	
061	White plastic	600
062	Translucent plastic	3 / U.
063	Silvery metal (Pin)	
064	Yellow/green plastic	64 65 66
065	Coppery metal (Wire)	
066	Yellow plastic	
067	Golden metal (Pin)	
068	White fabric with adhesive	68
((85)	CY SS CPS	

Note: This Test report shall be invalid if it is not stamped with the special seal for testing. Only responsible for the tested samples, invalid if rewritten, added and deleted. This test report cannot be reproduced, except in full, without prior written permission of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. Any demurral to the content of test report, please propose in 15 days after the report's sending out, it will not be accepted after this date.

Fax: (86-769) 38937859

Http://www.cpstlab.com

No. C230309039002-1

Date: Mar 22, 2023

Page 8 of 22

Sample No.	Description	Photograph
069	Silvery metal	69 70
070	White body	
071	White plastic	71 72 73
072	Black plastic	74
073	Gray plastic	
074	Black plastic	
075	Black plastic	75 76 77
076	Translucent plastic	
077	Red plastic	(RS) ~ CX ~ S

No. C230309039002-1 Date: Mar 22, 2023 Page 9 of 22

Sample No.	Description	Photograph
078	Black plastic	x 0 05 08
079	Gray plastic	25° C' 25'
080	Silvery metal	78 79 80 81
081	Silvery metal (Foil)	
082	White plastic	
083	Blue plastic	82 83 84 85
084	Green plastic	0, 20, 26,
085	Yellow plastic	CY ST CYS
086	Green PCB	3 CY 25 C
087	Silvery metal	
088	Black plastic	86 91
089	Black glue	87
090	Translucent glue	88 89 90 92 93
091	Beige plastic	
092	Silvery metal (Pin)	Sey Charles
093	Green PCB	S & SS

No. C230309039002-1 Date: Mar 22, 2023 Page 10 of 22

Sample No.	Description	Photograph
094	Green plastic	Post Crest
095	Red plastic with adhesive	94 95 96 97 98 9
096	Black plastic	
097	Black plastic	
098	Black plastic	as a second
099	Silvery metal	-ak (35) x CY

No. C230309039002-1 Date: Mar 22, 2023 Page 11 of 22

3. Test Results

3.1 Screening test for the specified hazardous substances of RoHS for the selected materials of the submitted sample:

- Heavy Metal (Cadmium, Chromium, Mercury, Lead) Content Test
- Bromine Content Test

According to IEC 62321-3-1:2013, and Quantification analyzed with Energy Dispersive X-ray Fluorescence Spectrometers.

Sample No.	Total Cadmium	Total Lead	Total Mercury	Total Chromium	Total Bromine
Sample 001	BL	BL	BL	BL	N.A.
Sample 002	BL	BL	BL	BL	BL
Sample 003	BL	BL	G BL	BL	N.A.
Sample 004	BL	G BL	BL	BL	N.A.
Sample 005	BL	BL	BL	BL	BL
Sample 006	BL	BL	BL	BL	BL
Sample 007	BL	BL	BL	Inconclusive^	N.A.
Sample 008	BL	BL	BL	BL	BL
Sample 009	BL	BL	BL	BL	BL
Sample 010	BL	BL	BL	BL	BL
Sample 011	BL	BL	BL	Inconclusive^	N.A.
Sample 012	BL U	BL	BL	BL	N.A.
Sample 013	BL	BL	BL	BL	N.A.
Sample 014	BL	BL	BL	BL	N.A.
Sample 015	BL	BL	BL	BL	N.A.
Sample 016	BL	BL	BL	BL	N.A.
Sample 017	BL	BL	BL	BL	BL
Sample 018	BL	BL	BL	BL	N.A.
Sample 019	BL	BL	BL	BL	BL
Sample 020	BL	BL	BL	BL	N.A.
Sample 021	BL	BL	BL	BL	BL
Sample 022	BL	BL	BL	BL O	BL
Sample 023	BL	BL	BL O	BL	N.A.
Sample 024	BL	BL O	BL	BL	BL
Sample 025	O BL O	BL	BL	BL	BL
Sample 026	BL	BL	BL	BL	N.A.

No. C230309039002-1 Date: Mar 22, 2023 Page 12 of 22

Sample No.	Total Cadmium	Total Lead	Total Mercury	Total Chromium	Total Bromine
Sample 027	BL	BL	BL	BL	Inconclusive^
Sample 028	BL	BL	BL	BL	BL O
Sample 029	BL	BL	BL	BL (BL
Sample 030	BL	BL	BL O	BL	Inconclusive^
Sample 031	BL	BL	BL	BL	BL
Sample 032	BL	BL	BL	BL	BL
Sample 033	BL	BL	BL	BL	N.A.
Sample 034	BL	BL	BL	BL	Inconclusive^
Sample 035	BL	BL	BL	Inconclusive^	N.A.
Sample 036	BL	BL	BL	BL	Inconclusive^
Sample 037	BL	BL	BL	BL	N.A.
Sample 038	BL	BL	BL	BL	N.A.
Sample 039	BL	BL	BL	BL	BL
Sample 040	BL	BL	BL	BL	BL
Sample 041	BL	BL	BL	BL	BL
Sample 042	BL	BL	BL	BL	Inconclusive^
Sample 043	BL	BL	BL	BL	N.A.
Sample 044	BL	BL	BL	Inconclusive^	BL
Sample 045	BL	BL	BL (BL	BL
Sample 046	BL	OL^	BL	BL	BL
Sample 047	BL	OL^	BL	BL	N.A.
Sample 048	BL	BL	BL	BL	Inconclusive^
Sample 049	BL	BL	BL	BL	Inconclusive^
Sample 050	BL	BL	BL	BL	N.A.
Sample 051	BL	BL	BL	BL	N.A.
Sample 052	BL	BL	BL	BL	N.A.
Sample 053	BL	BL	BL	BL	N.A.
Sample 054	BL	BL	BL	BL	BL
Sample 055	BL	BL	BL	BL	N.A.
Sample 056	BL	BL	BL	BL	BL
Sample 057	BL	BL	BL	BL	N.A.
Sample 058	BL	SL O	BL O	BL	BL
Sample 059	BL	BL O	BL	BL	BL
Sample 060	9 BL	BL	BL	BL	N.A.
Sample 061	BL	BL	BL	BL	BL

No. C230309039002-1 Date: Mar 22, 2023 Page 13 of 22

Sample No.	Total Cadmium	Total Lead	Total Mercury	Total Chromium	Total Bromine
Sample 062	BL	BL	BL	BL	BL
Sample 063	BL	BL	BL	BL	N.A.
Sample 064	BL	BL	BL	BL O	BL
Sample 065	BL	BL	BL O	BL	N.A.
Sample 066	BL	BL	BL	BL	Inconclusive^
Sample 067	BL	Inconclusive^	BL	BL	N.A.
Sample 068	BL	BL	BL	BL	BL
Sample 069	BL	BL	BL	BL	N.A.
Sample 070	BL	BL	BL	BL	BL
Sample 071	BL	BL	BL	BL	BL
Sample 072	BL	BL	BL	BL	BL
Sample 073	BL	BL	BL	BL	BL
Sample 074	BL	BL	BL	BL	BL
Sample 075	BL	BL	BL	BL	Inconclusive^
Sample 076	BL	BL	BL	BL	BL
Sample 077	BL	BL	BL	BL	BL
Sample 078	BL	BL	BL	BL	BL
Sample 079	BL	BL	BL	BL	BL
Sample 080	BL	BL	BL	BL	N.A.
Sample 081	BL	BL O	BL	BL	N.A.
Sample 082) BL	BL	BL	BL	BL
Sample 083	BL	BL	BL	BL	BL
Sample 084	BL	BL	BL	BL	BL
Sample 085	BL	BL	BL	BL	BL
Sample 086	BL	BL	BL	BL	Inconclusive^
Sample 087	BL	BL	BL	BL	N.A.
Sample 088	BL	BL	BL	BL	BL
Sample 089	BL	BL	BL	BL	BL
Sample 090	BL	BL	BL	BL	BL
Sample 091	BL	BL	BL	BL	Inconclusive^
Sample 092	BL	BL	, BL	BL O	N.A.
Sample 093	BL	BL	BL O	BL	Inconclusive^
Sample 094	BL	BL O	BL	BL	BL
Sample 095	BL O	BL	BL	BL	BL
Sample 096	BL	BL	BL	BL	BL

No. C230309039002-1 Date: Mar 22, 2023 Page 14 of 22

Sample No.	Total Cadmium	Total Lead	Total Mercury	Total Chromium	Total Bromine
Sample 097	BL	BL	BL	BL	Inconclusive^
Sample 098	BL	BL	BL	BL	BL O
Sample 099	BL	BL	BL	BL O	N.A.

Note:

- 1. All Concentrations express in "mg/kg" (milligram per kilogram), mg/kg ~ ppm
- 2. "OL" denotes "over limit"
- 3. "BL" denotes "below limit"
- 4. "N.A." denotes "Not Applicable"
- 5. "Inconclusive" denotes result is intermediate between "OL" and "BL"
- 6. "A"denotes the screening result was inconclusive(X) or over limit (OL), thus further confirmation test was conducted, results are listed in 3.2 and 3.3.

XRF screening limits for different materials:

Materials	Concentration (mg/kg)							
	Cd	Cr	Pb	Hg	Br			
Motol	BL≤(70-3σ) <x<< td=""><td>BL≤(700-3σ)<x<< td=""><td>BL≤(700-3σ)<x<< td=""><td>N.A.</td></x<<></td></x<<></td></x<<>		BL≤(700-3σ) <x<< td=""><td>BL≤(700-3σ)<x<< td=""><td>N.A.</td></x<<></td></x<<>	BL≤(700-3σ) <x<< td=""><td>N.A.</td></x<<>	N.A.			
Metal	(130+3σ)≤OL	BL≤(700-3σ) <x< td=""><td>(1300+3σ)≤OL</td><td>(1300+3σ)≤OL</td><td>N.A.</td></x<>	(1300+3σ)≤OL	(1300+3σ)≤OL	N.A.			
Dolumoro	BL≤(70-3σ) <x<< td=""><td rowspan="2">BL≤(700-3σ)<x< td=""><td>BL≤(700-3σ)<x<< td=""><td>BL≤(700-3σ)<x<< td=""><td>BL≤(300-3σ)<</td></x<<></td></x<<></td></x<></td></x<<>	BL≤(700-3σ) <x< td=""><td>BL≤(700-3σ)<x<< td=""><td>BL≤(700-3σ)<x<< td=""><td>BL≤(300-3σ)<</td></x<<></td></x<<></td></x<>	BL≤(700-3σ) <x<< td=""><td>BL≤(700-3σ)<x<< td=""><td>BL≤(300-3σ)<</td></x<<></td></x<<>	BL≤(700-3σ) <x<< td=""><td>BL≤(300-3σ)<</td></x<<>	BL≤(300-3σ)<			
Polymers	(130+3σ)≤OL		(1300+3σ)≤OL	(1300+3σ)≤OL	X			
Composite	BL≤(50-3σ) <x<< td=""><td>PL <!--500.25\<</td--><td>BL≤(500-3σ)<x<< td=""><td>BL≤(500-3σ)<x<< td=""><td>BL≤(250-3σ)<</td></x<<></td></x<<></td></td></x<<>	PL 500.25\<</td <td>BL≤(500-3σ)<x<< td=""><td>BL≤(500-3σ)<x<< td=""><td>BL≤(250-3σ)<</td></x<<></td></x<<></td>	BL≤(500-3σ) <x<< td=""><td>BL≤(500-3σ)<x<< td=""><td>BL≤(250-3σ)<</td></x<<></td></x<<>	BL≤(500-3σ) <x<< td=""><td>BL≤(250-3σ)<</td></x<<>	BL≤(250-3σ)<			
material	(150+3σ)≤OL	BL≤(500-3σ) <x< td=""><td>(1500+3σ)≤OL</td><td>(1500+3σ)≤OL</td><td>X</td></x<>	(1500+3σ)≤OL	(1500+3σ)≤OL	X			

No. C230309039002-1 Date: Mar 22, 2023 Page 15 of 22

3. 2 Test for Heavy Metals

Lead, Cadmium, Hexavalent Chromium and Mercury Tests according to IEC 62321-4:2013+A1:2017 &IEC 62321-5:2013 & IEC 62321-7-1:2015& IEC 62321-7-2:2017, Analysis was conducted by ICP-OES, UV-VIS.

Element	Total Cadmium [mg/kg]	Total Lead [mg/kg]	Total Mercury [mg/kg]	Hexavalent Chromium* [µg/cm²]	Hexavalent Chromium [mg/kg]
Detection Limit	5	5	5	0.10	5
Limit	100	1000	1000	CX - X	1000
Sample 007	7	6 1	1	N.D.	
Sample 011	1	1	19	N.D.	<i>A</i> 1
Sample 035	1	9		N.D.	0 1 (
Sample 044	51	CX 1 ×	1	2 / 6	N.D.
Sample 046	1 /	21407Ф	10		09
Sample 047	19	170*	1	091	U 16
Sample 067	CY	12299Ф	09/	0 1	R

Note:

- 1. All Concentrations express in "mg/kg" (milligram per kilogram), mg/kg ~ ppm.
- 2. "N.D." = "Not Detected".
- 3.*= a. When the concentration of hexavalent chromium in boiling-water-extraction solution with 1cm² sample surface area is higher than 0.13 μg/cm², the sample is positive, that is, contains hexavalent chromium;
 - b. When the concentration of hexavalent chromium in boiling-water-extraction solution with 1cm² sample surface area is N.D.(less than 0.10μg/cm²), the sample is negative, that is, no hexavalent chromium is detected;
 - c. When the concentration of hexavalent chromium in boiling-water-extraction solution with 1cm² sample surface area is between 0.10µg/cm² and 0.13µg/cm², it is not possible to directly determine whether hexavalent chromium is detected.

Surface differences of samples from different individuals may affect the determination results:

Since the storage condition and production date of the sample are not known, the test result of the sample can only represent the state of the sample containing hexavalent chromium at the time of the test.

- Positive = result be regarded as not comply with RoHS requirement Negative = result be regarded as comply with RoHS requirement
- 5. "-" =Not regulated
- 6. "Ф"=Sample 046 is electrical and electronic components containing lead in a glass or ceramic other than dielectric ceramic in capacitors, The lead content which is exempted from the requirement of directive 2011/65/EU(RoHS)Annex III 7(c)- I

"Φ"=The sample 067 is copper alloy. The lead content which is under 4% is exempted from the requirement of directive 2011/65/EU(RoHS)Annex III 6(c).

7. "*"=The sample of test item was resubmitted by the customer on Mar 21, 2023.

No. C230309039002-1 Date: Mar 22, 2023 Page 16 of 22

3. 3 Test for Flame retardants

 Test method: According to IEC 62321-6:2015, extracted by toluene and analyzed by Gas Chromatography and Mass Spectrometry (GC-MS). [Reporting Limit: 5mg/kg]

C_{z}			R	esult [mg/k	g]		RoHS
Test Item		Sample 027	Sample 030	Sample 034	Sample 036	Sample 042	Requirement [mg/kg]
6	Monobromobiphenyl	< 5	< 5	< 5	< 5	< 5	C) A
2	Dibromobiphenyl	< 5	< 5	< 5	< 5	< 5	
0	Tribromobiphenyl	< 5	< 5	< 5	< 5	< 5	0.
\mathcal{O}_X	Tetrabromobiphenyl	< 5	< 5	< 5	< 5	< 5	6 0
ia.	Pentabromobiphenyl	< 5	< 5	< 5	< 5	< 5	6
PBBs	Hexabromobiphenyl	< 5	< 5	< 5	< 5	< 5	Sum of PBBs < 1000
5	Heptabromobiphenyl	< 5	< 5	< 5	< 5	< 5	1000
	Octabromobiphenyl	< 5	< 5	< 5	< 5	< 5	683
00	Nonabromobiphenyl	< 5	< 5	< 5	< 5	< 5	X 0
\mathcal{O}_X	Decabromobiphenyl	< 5	< 5	< 5	< 5	< 5) CX
	Sum of PBBs	< 5	< 5	< 5	< 5	< 5	~ ~
~ <	Monobromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	00
3	Dibromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	U' - G'
	Tribromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	68
09	Tetrabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	K 59
Q,	Pentabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	0 (000
PBDEs	Hexabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	Sum of PBDEs < 1000
	Heptabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	1000
	Octabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	
	Nonabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	CX -
00	Decabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	09
)`	Sum of PBDEs	< 5	< 5	< 5	< 5	< 5	. Cx

No. C230309039002-1 Date: Mar 22, 2023 Page 17 of 22

		00	R	esult [mg/k	g]		RoHS
	Test Item		Sample 049	Sample 066	Sample 075	Sample 086	Requirement [mg/kg]
0,	Monobromobiphenyl	< 5	< 5	< 5	< 5	< 5	5 (
	Dibromobiphenyl	< 5	< 5	< 5	< 5	< 5	
	Tribromobiphenyl	< 5	< 5	< 5	< 5	< 5	60
	Tetrabromobiphenyl	< 5	< 5	< 5	< 5	< 5	0, 20
	Pentabromobiphenyl	< 5	< 5	< 5	< 5	< 5	0 (555
PBBs	Hexabromobiphenyl	< 5	< 5	< 5	< 5	< 5	Sum of PBBs < 1000
	Heptabromobiphenyl	< 5	< 5	< 5	< 5	< 5	1000
	Octabromobiphenyl	< 5	< 5	< 5	< 5	< 5	6
	Nonabromobiphenyl	< 5	< 5	< 5	< 5	< 5	-8° x
	Decabromobiphenyl	< 5	< 5	< 5	< 5	< 5	25
	Sum of PBBs	< 5	< 5	< 5	< 5	< 5	CX
18-	Monobromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	< _O
	Dibromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	b , O,
	Tribromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	6
	Tetrabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	8 1
	Pentabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	1 251
PBDEs	Hexabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	Sum of PBDEs
روحي	Heptabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	1000
	Octabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	, 0,
	Nonabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	5
	Decabromodiphenyl Ether	< 5	< 5	< 5	< 5	< 5	RX
	Sum of PBDEs	< 5	< 5	< 5	< 5	< 5	20,0

Note: This Test report shall be invalid if it is not stamped with the special seal for testing. Only responsible for the tested samples, invalid if rewritten, added and deleted. This test report cannot be reproduced, except in full, without prior written permission of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. Any demurral to the content of test report, please propose in 15 days after the report's sending out, it will not be accepted after this date.

Room 1092, No.12, East of Houjie Avenue, Houjie, Dongguan, Guangdong, China

No. C230309039002-1 Date: Mar 22, 2023 Page 18 of 22

_ <	- 02, C,		Result [mg/kg]			
	Test Item	Sample 091	Sample 093	Sample 097	Requirement [mg/kg]	
)`	Monobromobiphenyl	< 5	< 5	< 5	C.	
	Dibromobiphenyl	< 5	< 5	< 5		
	Tribromobiphenyl	< 5	< 5	< 5	42 / C	
	Tetrabromobiphenyl	< 5	< 5	< 5	200	
	Pentabromobiphenyl	< 5	< 5	< 5		
PBBs	Hexabromobiphenyl	< 5	< 5	< 5	Sum of PBBs < 1000	
	Heptabromobiphenyl	< 5	< 5	< 5	7 1000	
	Octabromobiphenyl	< 5	< 5	< 5		
	Nonabromobiphenyl	< 5	< 5	< 5	77 / 0	
	Decabromobiphenyl	< 5	< 5	< 5	25	
	Sum of PBBs	< 5	< 5	< 5	CY ~	
9	Monobromodiphenyl Ether	< 5	< 5	< 5	00	
	Dibromodiphenyl Ether	< 5	< 5	< 5	, C)	
	Tribromodiphenyl Ether	< 5	< 5	< 5	d) c?	
	Tetrabromodiphenyl Ether	< 5	< 5	< 5		
	Pentabromodiphenyl Ether	< 5	< 5	< 5		
PBDEs	Hexabromodiphenyl Ether	< 5	< 5	< 5	Sum of PBDEs	
) ,S	Heptabromodiphenyl Ether	< 5	< 5	< 5	1000	
	Octabromodiphenyl Ether	< 5	< 5	< 5	0,	
	Nonabromodiphenyl Ether	< 5	< 5	< 5		
	Decabromodiphenyl Ether	< 5	< 5	< 5		
	Sum of PBDEs	< 5	< 5	< 5	6° (

Note:

- 1. All Concentrations express in "mg/kg" (milligram per kilogram), mg/kg ~ ppm.
- 2. "<" denotes less than

No. C230309039002-1

Date: Mar 22, 2023

Page 19 of 22

3.4 <u>Di-(2-ethylhexyl) phthalate(DEHP), Benzylbutyl phthalate(BBP), Dibutyl phthalate (DBP), Diisobutyl</u> phthalate (DIBP) Content—RoHS Directive 2011/65/EU Annex II amending Directive (EU)2015/863

Test method: According to IEC 62321-8:2017; Analysis was conducted by GC-MS&LC-MS.


Element	Di-(2-ethylhexyl) phthalate (DEHP) [mg/kg]	Benzylbutyl phthalate (BBP) [mg/kg]	Dibutyl phthalate (DBP) [mg/kg]	Diisobutyl phthalate(DIBP) [mg/kg]	
Detection Limit	50	50 50		50	
Limit	1000	1000	1000	1000	
Sample 002	N.D.	N.D.	N.D.	N.D.	
Sample 005	N.D.	N.D.	340	N.D.	
Sample 006	N.D.	N.D.	N.D.	N.D.	
Sample 008	N.D.	N.D.	N.D.	N.D.	
Sample 009	N.D.	N.D.	N.D.	N.D.	
Sample 010	N.D.	N.D.	N.D.	N.D.	
Sample 017	N.D.	N.D.	N.D.	N.D.	
Sample 019	N.D.	N.D.	N.D.	N.D.	
Sample 021	N.D.	N.D.	N.D.	N.D.	
Sample 022	N.D.	N.D.	N.D.	N.D.	
Sample 024	N.D.	N.D.	N.D.	N.D.	
Sample 025	N.D.	N.D.	N.D.	N.D.	
Sample 027	N.D.	N.D.	N.D.	N.D.	
Sample 028	N.D.	N.D.	N.D.	N.D.	
Sample 029	N.D.	N.D.	N.D.	N.D.	
Sample 030	N.D.	N.D.	N.D.	N.D.	
Sample 031	N.D.	N.D.	N.D.	N.D.	
Sample 032	N.D.	N.D.	N.D.	N.D.	
Sample 034	N.D.	N.D.	N.D.	N.D.	
Sample 036	N.D.	N.D.	N.D.	N.D.	
Sample 039	N.D.	N.D.	N.D.	N.D.	
Sample 040	N.D.	N.D.	N.D.	N.D.	
Sample 041	N.D.	N.D.	N.D.	N.D.	
Sample 042	N.D.	N.D.	N.D.	N.D.	
Sample 044	N.D.	N.D.	N.D.	N.D.	
Sample 045	N.D.	N.D.	N.D.	N.D.	
Sample 046	N.D.	N.D.	N.D.	N.D.	
Sample 048	N.D.	N.D.	N.D.	N.D.	
Sample 049	N.D.	N.D.	N.D.	N.D.	

No. C230309039002-1 Date: Mar 22, 2023 Page 20 of 22

Element	Di-(2-ethylhexyl) phthalate (DEHP) [mg/kg]	Benzylbutyl phthalate (BBP) [mg/kg]	Dibutyl phthalate (DBP) [mg/kg]	Diisobutyl phthalate(DIBP) [mg/kg]	
Detection Limit	50	50 50		50	
Limit	1000	1000	1000	1000	
Sample 054	N.D.	N.D.	N.D.	N.D.	
Sample 056	110	N.D.	N.D.	N.D.	
Sample 058	N.D.	N.D.	N.D.	N.D.	
Sample 059	N.D.	N.D.	N.D.	N.D.	
Sample 061	N.D.	N.D.	N.D.	N.D.	
Sample 062	N.D.	N.D.	N.D.	N.D.	
Sample 064	N.D.	N.D.	N.D.	N.D.	
Sample 066	N.D.	N.D.	N.D.	N.D.	
Sample 068	N.D.	N.D.	N.D.	N.D.	
Sample 070	N.D.	N.D.	N.D.	N.D.	
Sample 071	N.D.	N.D.	N.D.	N.D.	
Sample 072	N.D.	N.D.	N.D.	N.D.	
Sample 073	N.D.	N.D.	N.D.	N.D.	
Sample 074	N.D.	N.D.	N.D.	N.D.	
Sample 075	N.D.	N.D.	S N.D.	N.D.	
Sample 076	N.D.	N.D.	N.D.	N.D.	
Sample 077	250	N.D.	N.D.	N.D.	
Sample 078	N.D.	N.D.	N.D.	N.D.	
Sample 079	N.D.	N.D.	N.D.	N.D.	
Sample 082	N.D.	N.D.	N.D.	N.D.	
Sample 083	N.D.	N.D.	N.D.	N.D.	
Sample 084	N.D.	N.D.	N.D.	N.D.	
Sample 085	N.D.	N.D.	N.D.	N.D.	
Sample 086	N.D.	N.D.	N.D.	N.D.	
Sample 088	N.D.	N.D.	N.D.	N.D.	
Sample 089	N.D.	N.D.	N.D.	N.D.	
Sample 090	N.D.	N.D.	N.D.	N.D.	
Sample 091	N.D.	N.D.	N.D.	N.D.	
Sample 093	N.D.	N.D.	N.D.	N.D.	
Sample 094	N.D.	N.D.	N.D.	N.D.	
Sample 095	N.D.	N.D.	N.D.	N.D.	
Sample 096	N.D.	N.D.	N.D.	N.D.	
Sample 097	N.D.	N.D.	N.D.	N.D.	

Element	Di-(2-ethylhexyl) phthalate (DEHP)	Benzylbutyl phthalate (BBP)	Dibutyl phthalate (DBP)	Diisobutyl phthalate(DIBP
	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
Detection Limit	50	50	50	50
Limit	1000	1000	1000	1000
Sample 008	ND VID	ND	ND	ND

Date: Mar 22, 2023

Page 21 of 22

No. C230309039002-1

Note:

- 1. All Concentrations express in "mg/kg" (milligram per kilogram), mg/kg ~ ppm.
- 2. "N.D." = "Not Detected".

Remark: As specified by applicant, to test content in the selected materials of the submitted samples. The test results are only responsible for the submitted sample. The test report is only for customer research, teaching, internal quality control, product development and other purposes, for reference only.

No. C230309039002-1

Date: Mar 22, 2023

Page 22 of 22

Photo of the Submitted Sample

*** End of Report ***

